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We consider an infinite classical system of interacting particles in R ~, ~ > 1. We 
study the time evolution of a particular class of nonequilibrium states. More 
precisely, the states we consider are Gibbs with respect to a Hamiltonian which 
differs from the Hamiltonian governing the motion by an external field (possibly 
not localized), satisfying certain conditions. It is proved that the time-evolved 
states satisfy superstable estimate and are described by correlation functions 
obeying the BBGKY hierarchy in a weak form. 

KEY WORDS: Spatial perturbations of equilibrium states; BBGKY hierar- 
chy; time-dependent superstable estimates. 

1. INTRODUCTION 

The basic problem of nonequilibrium statistical mechanics is the study of 
the time evolution of the macroscopic states of physical systems. The states 
are usually defined as probability measures on the phase space of the 
infinitely extended system, (15) so that one can implement the evolution of 
the states via the evolution of the phase points, whose existence has to be 
proved as a first step.. 

This problem was studied by Lanford in 1968 for classical point 
particle systems interacting via a two-body bounded, smooth, and short- 
range potential 69. (6) He proved an existence and uniqueness theorem for 
the infinite system of equations: 

aq~ (1.1) mqi = fli, fii = -- ~ ~ (qi -- qj), i, j = 1 . . . .  , n , . . .  
jvai 

for one-dimensional systems and a very large set of initial phase points. 
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One can easily see that the problem is highly nontrivial. In fact the set 
of initial phase points whose evolution is relevant from a thermodynamical 
point of view must have total infinite energy to be the support of interesting 
measures. Unfortunately such points may, in principle, develop singular 
solutions (infinitely many particles in bounded regions or infinite velocities) 
as in fact some of them do. Thus for this kind of existence theorem, we 
have to choose with some care the set of initial conditions: large enough for 
thermodynamical considerations, and small enough to prevent singularities. 

The result in Ref. 6 was expanded some years later by Dobrushin and 
Fritz in two directions: allowing singular potentials (3) and two-dimensional 
systems. (4) 

These papers are based on one a priori estimate making use of the 
energy conservation law, that allows crucial cancellations. On the other 
hand the authors constructed an example which showed that arguments 
based on the energy conservation law alone can work at most in two 
dimensions. (4) In fact, they proved that very honest initial phase points 
(having uniformly bounded velocities and densities) may develop singulari- 
ties in finite time in more than two dimensions. This is discouraging, 
because it seems difficult to prove that such phase points are negligible for 
physical reasons. (Reviews on the above may be found in Refs. 7, 8, 13.) 

However, there is another approach which, while giving weaker results, 
works in any dimension (see Refs. 1, 7, 10, 14). This is based on the 
following idea. Let us consider a Gibbs state/~ at some temperature and 
activity. Such a state is formally invariant with respect to the dynamics 
given by (1.1), and if we suppose that a t~-nonzero set of initial configura- 
tions will develop singularities (e.g., there will be infinitely many particles in 
a bounded region at some time t), we obtain a contradiction because the 
probability of finding such singularities is zero with respect to the time- 
invariant measure t~. The above idea may be used to obtain an existence 
theorem for the problem (1.1) for a class of initial conditions %0 such that 
/~(%0) -- 1. This set is, however, not explicitly known. Solutions of this kind, 
but with a somehow detailed qualitative picture of the motion, have been 
given previously by Sinai. (iv) 

The above solutions (sometimes called equilibrium solutions) apply 
only to states that are absolutely continuous with respect to the Gibbs state 
~, i.e., local perturbations from equilibrium. 

All these considerations suggest the study (in dimensions greater than 
two) directly of the evolution of the states without passing through the 
evolutions of phase points. This makes sense also from a physical point of 
view, where the interest lies in the evolution of time-dependent mean 
values. 

In this paper a small step is made in this direction. We investigate the 
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time evolution of an initial state which is Gibbs with respect to a Hamilto- 
nian H 0 + h'. The time evolution is governed by the Hamiltonian H0 which 
consists of both a kinetic and a potential part and h" = ~ h(ql). The external 
potential h(q) satisfies severe restrictions. For a large class of Hamiltonians 
H o and in any dimension, we prove the existence of a time-evolved state 
described by a family of correlation functions satisfying the BBGKY 
hierarchy in a weak form. Moreover, probability estimates, called superst- 
able, are preserved in time (not uniformly). The assumptions on h reduce to 
the integrability of (Vh) 2 in the case where h is uniformly bounded. While 
this does not mean that the state is absolutely continuous with respect to a 
Gibbs state generated by H 0, nevertheless interesting states, such as Gibbs 
states with asymptotically different activities, are excluded except in one 
dimension. On the other hand this analysis improves known results, by 
considering more general (long-range) potentials and proving strong proba- 
bility estimates. The case of a localized field (h with compact support) has 
been previously studied by Gallavotti, Lanford, and Lebowitz in Ref. 5 
with methods different from those used in the present paper. 

In Section 4, the main results of this work are obtained in a quite 
straightforward way, following an estimate, deduced in Section 3. Sections 
2 and 5 are devoted to definitions and comments. 

2. D E F I N I T I O N S  A N D  H Y P O T H E S E S  

A system of point particles in a bounded open set A, A c R ~ is 
described in the following way. For any bounded set A c R p, let %(A) be 
the grand canonical phase space defined as the symmetrization of 

A point X A in %(A) is thus represented by a finite subset of (A • R~). It 
will be denoted by XA =- { q l , P l . . .  qn, Pn}, n arbitrary, qi EA, p,.EN ~, 
where qi and Pi denote position and impulsion of the ith particle of the 
system. %(A) is equipped with the usual topology. A state of the system is a 
Borel probability measure on %(A). 

Let us introduce also the phase space % of the infinite system. A point 
X ~ % is described by a sequence {qi, P~} ~--0, qi, Pi E N ~, with the property 
that X A (A • N ~) has finite cardinality for any bounded open set A. Two 
sequences, differing only by a permutation, identify the same point in the 
phase space %. 

Let f--= { f n } , ~  be a sequence of all null, but a finite number, 
symmetric, continuous functions, f "  : (R ~ • RP)" ~ R. Assume also that they 
have compact support. Then a function Ef: % ~ R  may be defined as 
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follows: 

( s  ~] fN(S)(s), X e %  (2.1) 
S c X  

where the sum in (2.1) is done over all finite subsets S of X and N(s) 
denotes the cardinality of S. Equation (2.1) makes sense because ~] s c x  is 
finite for all X E %. Furthermore, if all fn are spatially supported in 
A c R ~, then 

( s  if X A ( A  c •  ~)= Y N ( A  c x R  ~') (2.2) 

The set of all s  will be denoted by ~. ~ is an algebra. % will be thought 
of as a topological space with a topology which is the minimal one, making 
continuous all the functions of ~. With this topology % is complete, 
metrizable, and separable. In the sequel we will find useful the subset of ~, 
denoted by ~ ' ,  of all functions generated by a single n-body function--i.e., 

~" =-{Zf , (Z f ) (X)= ~,scx f ' ( S ) }  (2.3) 
N ( S ) = n  

We define also, in a complete analogous way, the subalgebra 8~:r and the 
subset ~ of ~, as the family of all functions Zf  E ~ generated by infinite 
differentiable functions f ' .  

A state of the infinite-particle system is described by a Borel probabil- 
ity measure on %. 

Given a state u on %, the family of correlation functions {p,~) 
associated to v (if it exists) is defined by the following relations: 

f o,~(x, . . . . . .  x.)f"(xl x") dx' " " dx" - f (2"4/ 

for Zf ~ ~', X i = ( q i ,  lPi). 

Among the class of states, the so-called Gibbs states have particular 
relevance. They are defined as follows. For any bounded open set A c R ~, 
let H :  %(A)~  R a family of measurable functions. Then for any X ~ %, 
define the following probability Borel measure on %(A): 

P(dYAIXAc ) -  ~'(dYA) exp{--H(YA) -- H(YA[XAC)} (2.5) 
ZA(Xac) 

where 

X r = X n ( F •  Fc_R ", YA E%(A) (2.6) 

H(YAIXAc ) = lim (H(Y  a tO Xa) - H(YA) - H(Xa) ) (2.7) 
fa .a Ac " 

and the above limit is taken over a family of increasing bounded sets 
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invading A c, 

~, dq, . . .  dq, dp, . . .  dp,, 
)~( dY A) 1 + 

n = l  n !  (2.8) 

and finally, ZA(XAc ) is a normalization factor. Then a Gibbs state with 
respect to the family of Hamiltonians { H } is any probability measure/~ on 
% satisfying the equations 

f f(x)= f f e(dXAIX,,c) f(rA U XAc) (2.9) 

where f is a bounded continuous function, provided that the limit (2.7) 
exists at least for/ ,  almost all X E %. 

Solutions of Eqs. (2.9) (called the DLR equations after the works of 
Dobrushin, Lanford, and Ruelle (2' 9)) may be proven to exist, in many cases 
of interest for the classical statistical mechanics of one-component systems, 
where 

H(XA) = flT(XA) + flV(XA) + flgN(XA) (2.10) 

N(XA) 

1 ~, Pi 2 (m is the mass of particles) (2.11) T(XA)-  2m i=1 

V(Xa) = V(q, . . . . .  qu(xA)), V : A " ~ R  symmetric (2.12) 

and /3 > 0 and g E • are the two macroscopic parameters, the inverse 
temperature and the chemical potential, describing the thermodynamic 
equilibrium. 

It may be proven, (~6) that sufficient conditions for the existence of 
Gibbs measures of such type are (A open, bounded) 

N(XA) 2 
V(XA) > A [A ~ BN(XA) for some A,B > 0 (2.13) 

here [A[ denotes the volume of A. 
Moreover, given a covering ~ of R ~ in terms of elementary cubes of 

fixed side, denoted by A, A' etc., there exists a positive decreasing function 
such that 

E Cp(d(A',A)) < + oe (2.14a) 
A ' E ~  

H(XA[ YAc) >1 -- ~ ~ ~p(d(A',A))(N~(XA) + N~,(Yac)} (2.14b) 
A~2  A ' ~  

A '~A 

where d(A', A) is the Euclidean distance between the centers of the cubes 
A', A. Here and after N a denotes the function number of particles in the 
region ~. 
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Properties (2.13) and (2.14) are called, respectively, superstability and 
lower regularity. 

We want to study the time evolution of a Gibbs state/~ generated by a 
family H of Hamiltonians (2.10), in which 

V(Xa) = V0(XA) + /7(XA) (2.15) 

under the action of the dynamics generated by 

Ho(XA) = T(XA) + V0(XA) (2.16) 

We assume (although not strictly necessary) V o to be a potential energy 
generated by a single two-body potential �9 : (0, + ~ )  --~ R, i.e., 

1 Vo(qt  . . . q , )  = -~ ~ d ~ ( l q , -  qj[) (2.17) 
i~j 

~b continuously differentiable and such that (2.13) and (2.14) hold (with V 
replaced by Vo). We further require 

IO'(r)l < r a for some G > 0, 3 > 1 (2.18) 

and 

where 

~, F(A,A') = F <  +oo (2.19) 
A ' E ~  

3 A ' N 3 A = O  

L 0 (Ix - x't) 
F(A, A') = sup 3x  (2.20) 

x E A  
x ' E A '  

It is easily seen that all honest two-body interactions, possibly diverging at 
the origin, and with integrable long range, satisfy the above requirement. 

h is assumed to be of the form 

f f (XA)= ~ h ( q i )  (2.21) 
i: 

qiEXA 

where h : W ---> • is a positive, continuously differentiable function satisfying 
the following condition: 

Although condition (2.22) is too restrictive to cover all physically interesting 
cases of spatial perturbations (especially for v > 1), it does not imply the 
absolute continuity of the state/~ with respect to some Gibbs state gener- 
ated by H 0, since (2.21) may hold, without h being integrable. The 
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existence of solutions of the DLR equations follows, in our case, by the 
following estimate. (16) 

Let /*A be a finite-volume Gibbs state with respect to a family of 
Hamittonians (2.10) satisfying (2.15) with V 0 superstable and lower regular 
and h continuous and positive. Let {PA} be the family of correlation 
functions associated to/z A. Then there exist positive numbers k and ~, not 
depending on A, such that for any ~2 c A c R ~, ~ measurable, the following 
estimate holds: 

oA(X1 . . .  Xn) < ~%xp la I fl k h(qi) + ~ 
i = l  

where 

xi= (q;, e,-), q, e e  

(2.23) 

A probabilistic consequence of (2.23) is that the /~A probability of finding 
more than n particles in f~ is bounded by 

exp[ - ( K,/l~[)n 2 + K2n ] (2.24) 

for some K z and K 2 not depending on A. 
We refer to (2.24) as the superstable estimates. They allow the con- 

struction of a compact set on % in which the measures {/~a} are almost 
concentrated, and thus the existence (by compactness) of limiting measures 
/, satisfying the DLR equations together with the superstability estimates. 
Moreover any limiting state is described by correlation functions satisfying 
(2.23). 

3. BASIC ESTIMATE 

The main idea of this section is the following. Suppose the existence of 
the Hamiltonian dynamics generated by H 0 as a /, almost everywhere 
defined measurable flow ~7, on %. 

Let us denote by 3', its action on the functions 

(ytf)(x) = f(~_tx),  x ~ %, t E R, f ~ Le(%, I~), p > 1 

(3.1) 

Then 7, has the formal generator {.,H0} , where {., .} denotes the Poisson 
brackets. Then obviously 

( . , / - / 0 }  = - { . , s  ( 3 . 2 )  

where H 1 = H 0 +/7. Now the flow generated by {., H 1 } is already proved to 
exist (equilibrium dynamics) and leaves/,  invariant, while the flow gener- 
ated by (.,h} is very simple: all particles are frozen and vary their 
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momenta accordingly to the field h. So one can hope to control the 
finite-volume dynamics generated by {.,H0}, combining these two facts. 
With this in mind, we denote by A a v-dimensional open sphere centered at 
the origin with arbitrary radius. For a fixed x E %, we are looking for 
trajectories in % satisfying 

q ? ( t )  -- ~Pi 

[ OHo(XA(t)) 3Ho(XA(t) lxAC) if qi(O) = qi E A 
e,(,) 

-- 0 qi + 0 qi 

~li(t) = 0 1 if qi ~ Ac (3.3) 
?~( t) = o J 

c ~  

X A ( O ) = X A = X  f 'I(Af 'Ia" ), X = ( q i ,  Pi)i= 1 
XAc = X n (A c n W), initial conditions 

elastic collision in 0A 

OH,(XA(t)) 
C ( t )  - opt 

if q~(O) = q, e A [ OHI(XA(t)) OH,(XA(t)[XAc) ] 
)iA( t) = -- Oq i + Oq i 

(3.4) 

0~(t) = 0 } if q , ~ A  ~ 
piA( t) 0 

same initial and boundary conditions as above 

C ( t )  = o 

0h" 
/~,.h(t) - ~-q~q/, if qi ~ A (3.5) 

p~(t) = O, if q , ~ A  

same initial conditions 

Let us denote by ~A, 8A, fiA the one-parameter measurable flows 
satisfying the evolution problems (3.3), (3.5). In constructing 37 A and 6. A 
some problems may arise. Firstly, the time independent field 0H~(. I XAc) 
/Oqi, k = 0, 1 may be singular for some x ~ %, But with our assumptions, 
this is not the case for/~ almost all x e %. 

Secondly, if one starts with a local solution [in all the case in which 
with/z probability one (OHk/Oqi)(. I XAC) is not singular] up to the time of 
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the first collision, and then tries to obtain a global solution with the aid of 
the elastic reflection law, one cannot a priori exclude the possibility of 
tangent collisions and that a particle can suffer infinitely many hits with the 
boundary, in a finite interval of time. In Ref. 11 it is proved that these 
pathologies can occur at most for a set N of initial configuration X a of 
h-measure 0. This allows us to define ~A and ~7 A as measurable flow on 
(%, ~) and this is enough for our purpose. 

Denoting by 3,t a, a A, fit A, the action of the above flows on the functions 
following definition (3.1), the following hold 

[[atAf[lp = [If lie, f E Lp(%,/.t), P /> 1 (3.6) 

II B,ATI[p < f ~ (dx)eAAtlf(X)lP (3.7) 

where II " lip denotes the L e norm with respect to/t ,  and 

~i.. [ Oh ( x ) I  X ~ %  (3.8) AA(X)= -2B  : ?,. , 

qi~A 

Equation (3.6) follows by the DLR equations, the Liouville theorem, and 
energy and particle number conservations. 

Proof ot (3. 7"). By the DLR equations, the right-hand side of (3.7) is 
(z = exp - fl/~) 

f t~(dx) 1 z" ZA(Xac) ~ -~-(. L x , , ) . d q ,  " " dq, dp, " " dP, 

x I f (q~""  qnP]'" "P, U Xae)le 

x exp(-~8[ i~=, fia-,(Pi)2- V(q, . . . q , ) -  H,(q, . . .q, lXac)]) 

(3.9) 

because the Jacobian of transformation fit A is one and 

~A_t(Pi ) = 13i -- l Oh (3.10) 
Oqi 

So estimate (3.8) follows by neglecting t2(Oh/Oqi) 2 by positivity. 
Let us define 

g(X)  = Z( Oh ]2 (3.11) 
bq] 

As a consequence of our assumptions, exp g E Le(%,/t), p >/ 1. 
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In fact the n-body correlation functions of/Z are bounded by 

f l  { e x p [ -  tip 2 -  flh(qi)]} .~ (3.12) 
i = 1  

that are exactly the correlations functions associated to a Gibbs state of 
free particles with chemical potential log~/fl  and with an external field h. 
Let us call such Gibbs state v. Then f e x p ( p ,  g)(x)d/z < f e x p ( p -  g)(x)dv 
and the latter integral may be computed explicitly. An easy calculation 
shows that it converges if and only if condition (2.22) is satisfied. The next 
one is an estimate uniform in A that will allow us to get all results 
concerning the existence and properties of the infinite-volume time-evolved 
state. 

Proposition 3.1. For any measurable f: % ~ • and any real positive 
even function ~ the following estimate holds: 

provided the right-hand side of (3.13) makes sense. 

Proof. By the use of the Trotter formula 

~tAf--n l i m  (flt)na~n)nf (3.14) 

where the above limit is taken/z-almost everywhere. Putting 8t A = fltAaff, we 
want to estimate (8~n)~f uniformly in A and n. 

As a consequence of the H61der inequality and (3.7) 

11 fltAfl[p< [IfllprlleAA'lU p (3.15) 

p > 1 and r and s conjugate exponents. Hence 

A n A A A (Be~,) f 1 = fl,/~ae/,(St/,)n-lft <IIeAA'/'[I, a,/,(St),)'-lf 

 lleaA'QI, ( S t ) n ) n - - l f  r <" . . .  
n-1 k AAt/n 32k=O(I / r )  <ll e [l~ Ilfll~,, (3.16) 

where we have used (3.15) and the isometric nature of at~ n, (3.6). 
By the use of DLR  equations, and performing the Gaussian integra- 

tions on the momenta 

f e x p (  s t -  "~d - [fl(-~- ~.ji.. (~-qi)2]d/z<fexp[fl(n)2g]d/z ~AA) /z--fexp ts) 2 ": ts 
qi ~ A  

(3.17) 
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Moreover 

putting 

1 n-1 1 )k 1 (3.18) 
--~__0 ( - s  _ r =1  r" 

r = [ l +  q~ ] andhence s = [  n ] n ~ +1 (3.19) 

Thus: 

( J / [  ' '1 / (~/)n)? 1 < exp fig ~ + n dl~ Ilfllexpq0(t) 

(3.20) 

and the thesis follows by standard arguments. 
Let us interpret Proposition 3.1 compared with condition (2.22). Let us 

put f = N . .  Proposition 3.1 says that the time-evolved expectation value of 
Ne remains bounded for each time, as A increases, provided (2.22) is 
satisfied. There are two cases. If h is asymptotically divergent the particles 
gas is asymptotically rarefied, thus, also if the gradient is increasing, the low 
density prevents singularities. If h is bounded, the gradient must vanish 
asymptotically, so that it cannot perturb the equilibrium motion in a 
singular way. 

4. THE E V O L U T I O N  OF THE S T A T E S  

Let •n be the p-dimensional open sphere of center 0 and radius n, with 
n a positive integer, and ~{t = 7t ~". 

A natural question arises. If we denote by 7t/z the evolution of the 
state/z under the action of 7t", i.e., 

(~t/*)(A) = W(7"-tXA) (4.1) 

A C % is a Borel set and XA is the indicator function of A, then one could 
define the evolved state "Yt#, under the action of the infinite dynamics, as 
the weak limit of "/t/~, provided such a limit exists. 

It is possible to prove the existence of such a limit, for subsequence, 
closely following standard arguments of equilibrium statistical mechanics 
of noncompact systems. In fact, by virtue of Proposition 3.1, putting 
f =  exp[~(t)N~]/l~l, where ~( t )= ~e -Itl, and ~ > 0 sufficiently small, then 

f(,12~)(dX)exp f(O--iN- < ~(dx)exp C3 (4.2) 

(where C 3 -- fBegd~) after choosing ~(t) = Itl for the sake of concreteness. 
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Superstable estimates (2.24) over the initial state/z and the Tchtbychev 
inequality allow us to prove superstable estimates also for the time-evolved 
states 7t/~ (uniformly in n). Thus for any fixed time t we define, by 
compactness, 7t/x as a weak limit. 

We now prove the following statement: 
If for fixed t, 7tk/L converges weakly to a measure 7t/~ for k---> + 0% 

then limk_~+~(Ttk/Z)(Zf)= 7,/~(Y~f) for all Z f E  ~. (Recall that ~ is an 
algebra of unbounded functions.) 

In fact 

N ( s )  = h 

< sup Ilfhll  c4f(n, tt ) (dx) N . ( x )  ~ (4.3) 
h 

where f] is a spatial support for all the f ( ' ) ' s  and C 4 and a are positive 
constants depending only on the number, different from zero, of fh generat- 
ing Zf. Thus d~ E Lp(%,Tt#). 

Moreover if 

r = { Mr otherwisef~ - M < r < M (4.4) 

(vT )[Y.f - 2(v/'t,)[lY41x(l:r, fl >~ M ) ]  

< fl M)] 

D(f,t)  
,5< 2 -  (4.5) 

where X([Zft >/ M) is the indicator of the set (Z f  > M)  and D(f,t) is a 
positive constant depending only on f and t. 

The estimate (4.5) combined with an c/3 argument proves the state- 
ment. 

We now prove the existence of a common subsequence of integers, nl, 
such that, for all t E R, 

lim ('YT't~)(Zf) = ('ytt~)(Zf), Xf E ff.oo (4.6) 
i - ~ ' ~  

and the above convergence is uniform in t on compact sets. To this 
purpose, it is enough to prove the equicontinuity of the family (77/z)(Zf) for 
fixed Z f, and combine it with the usual diagonal trick. The equicontinuity 
follows easily by recognizing that, for sufficiently large n the following 
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identity holds: 

where 

= (4.7) 

( O Z f  OZf OV0) (4.8) 
~ ' f = ~ i  ~ "P i-- ~t9i " Oq i 

So it is enough to prove the boundness of (yt/z)(g~.f) uniformly in n and t 
on compact sets. The first term on the right-hand side of (4.8) does not 
create problems, since it belongs to ~, so (4.2) and (4.3) may be used. The 
second one is bounded by 

CsNu(x f' ~ F,.(x) (4.9) 

~ qi~[~ 
where C 5 > 0 depends only on f, 

F~(x) = - y~ a ~ ( q ; -  qj) 
jv/-i Oqi 

and f~ is a spatial support for Zf. Moreover, (4.9) may be bounded by: 

CsN~(X)'*If[.~.,,): 
qi,q;E9 

iO(q i -- qj.)[8] + GN2(x) 

t 
+ • ~ NaNa, F(A,A')I (4.10) 

A: N: J A' n ~:~O Z,'n0g=O 

where ~ D f~ is a suitably chosen bounded region. 
Thus Proposition 3.1, (2.19) and superstable estimates on the initial 

state ~, allow us to obtain a n-independent bound on the expectation value 
of (4.10) with respect to (yflF). 

The same argument used above allows us also to prove that s  
E Lp(%, Yt/0, P /> 1 and 

lim (7ffg)(gEf) = ( y t / . t ) ( ~ ] ~ f )  (4.11) 
i--) + oo 

We may summarize all the results obtained in the following form. 

Theorem 4.1. There exists a one-parameter group of probability 
Borel measure on %, (Tt#)t~R and a subsequence (ni) of positive integers 
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such that 

(i) lim (yT'/,)(gf) = (7,/Q(Y.f), Yf E g (4.12) i---) + oo 
(ii) "h/* satisfy the superstable estimate for any t E R and hence 

g ~ Lp(%,Vt~),p > 1. 
(iii) For any Y,f E (2o0, (,tt/z)(s is differentiable in t and satisfies 

d (~,/,)(y.f) = (3',/*)(es (4.13) 

The above result may be read in terms of correlation functions as 
follows. The estimate (4.3) 

< costllf(')ll , 57f E (2, (4.14) 

combined with the Riesz theorem, imply the existence of a family of 
symmetric, o-finite (unnormalized) measure do~ on (W x W) n such that, for 
all t E R, 

J n! I n ( x ~ ' " x " )  (4.15) 

Moreover, if A is a bounded set of Lebesgue null measure, from the 
equality 

fa e p T ( x ~ i  x,) = (Y,/z)(NxA) (4.16) 

(where Y'XA is defined in an obvious way), Proposition 3.1, and the 
continuity of initial state correlations functions, there follows the absolute 
continuity with respect to the Lebesgue measures of the measures do7'. Thus 
(4.13) may be written, by straightforward computations: 

d o,( f )  = p,(eof)  - P,(fl), f E C0~(W • W)" (4.17) 

where 

o,( f )  = f dx, . . .  dx, o'~(x, . . .  x , ) f ( x l  . . .  x,) (4.18) 

and Ot ~ are the densities of the measure dpT. 

(Eof) ( /1  /n)=2(OHo Of OH o Of) (4.19) 
' ' "  i= l  Opi Oqi Oqi OPi 

O(I) af  (4.20) f , (x ,  . . .  x , ,x ,+ , )  = i=12 ~qi(qi-- qn+l) Opi 
The equations (4.17) are called BBGKY hierarchy. To summarize, we state 
the following theorem. 
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Theorem 4.2. The evolved measure Yt/z are described by correlation 
functions that satisfy the BBGKY hierarchy in the weak form given by 
(4.17). 

5. CONCLUDING REMARKS 

The results of the previous sections may be improved by the use of 
some arguments of the equilibrium dynamics. Since such arguments are 
already known and it needs slight modifications in our nonequilibrium 
context, the proof of the statements of this section will be only sketched. 

Define: 

~0(x) = max(logx, 1), x > 0 (5.1) 

o ,o(x) 
G(X) = sup sup o" (5.2) 

1 G.,o(X) -- N#,o ~m + ~ 2 . , o  ~(Iq' - qfl) + B (5.3) 
i j=/=i 

where ~ ~,o means that the sum is restricted to those particles that are in the 
spherical open region with center /Z and radius o. G~,, > 0 if B is large 
enough. It is not hard to see that G is Le(/Z ), p > 1 and that the set 
{ G < + 0o } is full with respect to/Z. Moreover 

f /Z (dx) a(yAx) < h(t)ll a lie (5.4) 

by Proposition 3.1, where h > 1 is an increasing function. Define 

+ ~ ~ e-ltl 
f -  at o G(r,ax ) =  A(x) (5.5) 

O~(X ) = lira inf Ga(x) (5.6) 
A . a  R ~ 

As a consequence of Fatou's lemma, the Fubini theorem, and (5.4) 

f /Z (dx) Goo(x) -<< 4110 lie (5.7) 

Thus Coo is/ ,-almost everywhere finite, and for/Z almost all X ~ %, there 
can be found a sequence A.~ R ~ such that GA(X) < C(X), where C(X) is a 
positive number depending only on X. Moreover denoting xA(t) = y i ( X )  
one has for t ~ [ -  T, T] 

[qia(t) - qi[ < s ds[ G(Xa(t))eP(qia(s)) ]1/2 

< erv~ii(T)C(X) (5.8) 
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where epi(T ) = sup[~0(qi(s)) I Isl < T]. On the other hand one also obtains 

qg,(T) < C2ep(qt ) (5.9) 

C2 > 0 depending only on X and T. The uniform control (in A) of the 
displacements allows us to apply the techniques of Refs. 7 and 10 (Ref. 15 
for long-range potential) in order to prove the following theorem: 

Theorem 5.1. For all X for which Goo(X)< + oo, there exists a 
solution X ~ X ( t )  of the Newton equations satisfying 

Iq;(t) - q;I 
q~(q,) < n < + oo (5.10) 

for some H > 0. Moreover such a solution is unique in the class of all 
solutions satisfying (5.10) and it yields 

X ( t )  = lira y~(X)  (5.11) 
A-+oo 

We underline that the convergence (5.11) (for subsequence) may be 
proven to hold also for a reasonable sequence of regions, (17'~~ improving 
the results of the previous section. 

As a final remark, it has to be noticed that a stronger uniqueness 
theorem than that already stated in Theorem 5.1, is expected to hold. More 
precisely one would be able to prove that there is only one flow of measures 
(~ItlL}t~R satisfying Eq. (4.14) and regularity conditions as superstability 
estimates, for each time. Such a problem seems quite connected with the 
one treated in Ref. 12, but it does not seem easy to combine the techniques 
of such a paper with the results presented here. 
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